
How To Look Like A UNIX Guru 
Terence Parr  

Last updated: September 2, 2003  

UNIX is an extremely popular platform for deploying server software partly because of 
its security and stability, but also because it has a rich set of command line and scripting 
tools. Programmers use these tools for manipulating the file system, processing log files, 
and generally automating as much as possible.  

If you want to be a serious server developer, you will need to have a certain facility with 
a number of UNIX tools; about 15. You will start to see similarities among them, 
particularly regular expressions, and soon you will feel very comfortable. Combining the 
simple commands, you can build very powerful tools very quickly--much faster than you 
could build the equivalent functionality in C or Java, for example.  

This lecture takes you through the basic commands and then shows you how to combine 
them in simple patterns or idioms to provide sophisticated functionality like 
histogramming. This lecture assumes you know what a shell is and that you have some 
basic familiarity with UNIX.  

Everything is a stream 

The first thing you need to know is that UNIX is based upon the idea of a stream. 
Everything is a stream, or appears to be. Device drivers look like streams, terminals look 
like streams, processes communicate via streams, etc... The input and output of a program 
are streams that you can redirect into a device, a file, or another program.  

Here is an example device, the null device, that lets you throw output away. For example, 
you might want to run a program but ignore the output.  

$ ls > /dev/null # ignore output of ls 

where "# ignore output of ls " is a comment.  

Most of the commands covered in this lecture process stdin  and send results to stdout . 
In this manner, you can incrementally process a data stream by hooking the output of one 
tool to the input of another via a pipe. For example, the following piped sequence prints 
the number of files in the current directory modified in August.  

$ ls -l | grep Aug | wc -l 

Imagine how long it would take you to write the equivalent C or Java program. You can 
become an extremely productive UNIX programmer if you learn to combine the simple 



command-line tools. Even when programming on a PC, I use MKS's UNIX shell and 
command library to make it look like a UNIX box. Worth the cash.  

Getting help 

If you need to know about a command, ask for the "man" page. For example, to find out 
about the ls  command, type  

$ man ls 
LS(1)                   System General Commands Man ual                   
LS(1) 
 
NAME 
     ls - list directory contents 
 
SYNOPSIS 
     ls [-ACFLRSTWacdfgiklnoqrstux1] [file ...] 
 
DESCRIPTION 
     For each operand that names a file of a type o ther than directory, 
ls 
... 

You will get a summary of the command and any arguments.  

If you cannot remember the command's name, try using apropos  which finds commands 
and library routines related to that word. For example, to find out how to do checksums, 
type  

$ apropos checksum 
cksum(1), sum(1)         - display file checksums a nd block counts 
md5(1)                   - calculate a message-dige st fingerprint 
(checksum) for a file 

The basics 

There are 4 useful ways to display the contents or portions of a file. The first is the very 
commonly used command cat . For example, to display your bash initialization file, type:  

$ cat ~parrt/.bash_profile 

where ~parrt  is user parrt's home directory. If a file is really big, you will probably want 
to use more , which spits the file out in screen-size chunks.  

$ more /var/log/mail.log 

If you only want to see the first few lines of a file or the last few lines use head  and tail .  

$ head /var/log/mail.log 



$ tail /var/log/mail.log 

You can specify a number as an argument to get a specific number of lines:  

$ head -30 /var/log/mail.log 

The most useful incantation of tail  prints the last few lines of a file and then waits, 
printing new lines as they are appended to the file. This is great for watching a log file:  

$ tail -f /var/log/mail.log 

If you need to know how many characters, words, or lines are in a file, use wc:  

$ wc /var/log/mail.log 
     164    2916   37896 /var/log/mail.log 

Where the numbers are, in order, lines, words, then characters. For clarity, you can use wc 

-l  to print just the number of lines.  

Tarballs 

Note: The name comes from a similar word, hairball (stuff that cats throw up), I'm pretty 
sure.  

To collect a bunch of files and directories together, use tar . For example, to tar up your 
entire home directory and put the tarball into /tmp , do this  

$ cd ~parrt 
$ cd .. # go one dir above dir you want to tar 
$ tar cvf /tmp/parrt.backup.tar parrt 

By convention, use .tar  as the extension. To untar this file use  

$ cd /tmp 
$ tar xvf parrt.backup.tar 

tar  untars things in the current directory!  

After running the untar, you will find a new directory, /tmp/parrt , that is a copy of your 
home directory. Note that the way you tar things up dictates the directory structure when 
untarred. The fact that I mentioned parrt  in the tar creation means that I'll have that dir 
when untarred. In contrast, the following will also make a copy of my home directory, 
but without having a parrt  root dir:  

$ cd ~parrt 
$ tar cvf /tmp/parrt.backup.tar * 



It is a good idea to tar things up with a root directory so that when you untar you don't 
generate a million files in the current directly. To see what's in a tarball, use  

$ tar tvf /tmp/parrt.backup.tar 

Most of the time you can save space by using the z  argument. The tarball will then be 
gzip 'd and you should use file extension .tar.gz :  

$ cd ~parrt 
$ cd .. # go one dir above dir you want to tar 
$ tar cvfz /tmp/parrt.backup.tar.gz parrt 

Unzipping requires the z  argument also:  

$ cd /tmp 
$ tar xvfz parrt.backup.tar.gz 

If you have a big file to compress, use gzip :  

$ gzip bigfile 

After execution, your file will have been renamed bigfile.gz . To uncompress, use  

$ gzip -d bigfile.gz 

To display a text file that is currently gzip 'd, use zcat :  

$ zcat bigfile.gz 

Searching streams 

One of the most useful tools available on UNIX and the one you may use the most is 
grep . This tool matches regular expressions (which includes simple words) and prints 
matching lines to stdout .  

The simplest incantation looks for a particular character sequence in a set of files. Here is 
an example that looks for any reference to System  in the java files in the current 
directory.  

grep System *.java 

You may find the dot '.' regular expression useful. It matches any single character but is 
typically combined with the star, which matches zero or more of the preceding item. Be 
careful to enclose the expression in single quotes so the command-line expansion doesn't 
modify the argument. The following example, looks for references to any a forum page in 
a server log file:  



$ grep '/forum/.*' /home/public/cs601/unix/access.l og 

or equivalently:  

$ cat /home/public/cs601/unix/access.log | grep '/f orum/.*'  

The second form is useful when you want to process a collection of files as a single 
stream as in:  

cat /home/public/cs601/unix/access*.log | grep '/fo rum/.*' 

If you need to look for a string at the beginning of a line, use caret '^':  

$ grep '^195.77.105.200' /home/public/cs601/unix/ac cess*.log 

This finds all lines in all access logs that begin with IP address 195.77.105.200.  

If you would like to invert the pattern matching to find lines that do not match a pattern, 
use -v . Here is an example that finds references to non image GETs in a log file:  

$ cat /home/public/cs601/unix/access.log | grep -v '/images' 

Now imagine that you have an http log file and you would like to filter out page requests 
made by nonhuman spiders. If you have a file called spider.IPs , you can find all 
nonspider page views via:  

$ cat /home/public/cs601/unix/access.log | grep -v -f /tmp/spider.IPs 

Finally, to ignore the case of the input stream, use -i .  

Translating streams 

Morphing a text stream is a fundamental UNIX operation. PERL is a good tool for this, 
but since I don't like PERL I stick with three tools: tr , sed , and awk. PERL and these 
tools are line-by-line tools in that they operate well only on patterns fully contained 
within a single line. If you need to process more complicated patterns like XML or you 
need to parse a programming language, use a context-free grammar tool like ANTLR.  

tr 

For manipulating whitespace, you will find tr  very useful.  

If you have columns of data separated by spaces and you would like the columns to 
collapse so there is a single column of data, tell tr  to replace space with newline tr ' ' 

'\n' . Consider input file /home/public/cs601/unix/names :  

jim scott mike 



bill randy tom 

To get all those names in a column, use  

$ cat /home/public/cs601/unix/names | tr ' ' '\n' 

If you would like to collapse all sequences of spaces into one single space, use tr -s ' 

' .  

To convert a PC file to UNIX, you have to get rid of the '\r' characters. Use tr -d '\r' .  

sed 

If dropping or translating single characters is not enough, you can use sed  (stream editor) 
to replace or delete text chunks matched by regular expressions. For example, to delete 
all references to word scott  in the names file from above, use  

$ cat /home/public/cs601/unix/names | sed 's/scott/ /' 

which substitutes scott  for nothing. If there are multiple references to scott  on a single 
line, use the g suffix to indicate "global" on that line otherwise only the first occurrence 
will be removed:  

$ ... | sed 's/scott//g' 

If you would like to replace references to view.jsp  with index.jsp , use  

$ ... | sed 's/view.jsp/index.jsp/' 

If you want any .asp  file converted to .jsp , you must match the file name with a regular 
expression and refer to it via \1 :  

$ ... | sed 's/\(.*\).asp/\1.jsp/' 

The \(...\)  grouping collects text that you can refer to with \1 .  

If you want to kill everything from the ',' character to end of line, use the end-of-line 
marker $:  

$ ... | sed 's/,.*$//' # kill from comma to end of line 

awk 

When you need to work with columns of data or execute a little bit of code for each line 
matching a pattern, use awk. awk programs are pattern-action pairs. While some awk 
programs are complicated enough to require a separate file containing the program, you 
can do some amazing things using an argument on the command-line.  



awk thinks input lines are broken up into fields (i.e., columns) separate by whitespace. 
Fields are referenced in an action via $1, $2, ... while $0 refers to the entire input line.  

A pattern-action pair looks like:  

pattern {action} 

If you omit the pattern, the action is executed for each input line. Omitting the action 
means print the line. You can separate the pairs by newline or semicolon.  

Consider input  

aasghar Asghar, Ali 
wchen   Chen, Wei 
zchen   Chen, Zhen-Jian 

If you want a list of login names, ask awk to print the first column:  

$ cat /home/public/cs601/unix/emails.txt | awk '{pr int $1;}' 

If you want to convert the login names to email addresses, use the printf  C-lookalike 
function:  

$ cat /home/public/cs601/unix/emails.txt | awk 
'{printf("%s@cs.usfca.edu,",$1);}' 

Because of the missing \n  in the printf  string, you'll see the output all on one line ready 
for pasting into a mail program:  

aasghar@cs.usfca.edu,wchen@cs.usfca.edu,zchen@cs.us fca.edu 

You might also want to reorder columns of data. To print firstname, lastname, you might 
try:  

$ cat /home/public/cs601/unix/emails.txt | awk '{pr intf("%s %s\n", $3, 
$2);}' 

but you'll notice that the comma is still there as it is part of the column:  

Ali Asghar, 
Wei Chen, 
Zhen-Jian Chen, 

You need to pipe the output thru tr  (or sed ) to strip the comma:  

$ cat /home/public/cs601/unix/emails.txt | \ 
  awk '{printf("%s %s\n", $3, $2);}' | \ 
  tr -d ',' 



Then you will see:  

Ali Asghar 
Wei Chen 
Zhen-Jian Chen 

You can also use awk to examine the value of content. To sum up the first column of the 
following data (in file /home/public/cs601/unix/coffee ):  

3 parrt 
2 jcoker 
8 tombu 

use the following simple command:  

$ awk '{n+=$1;} ; END {print n;}' < /home/public/cs 601/unix/coffee 

where END is a special pattern that means "after processing the stream."  

If you want to filter or sum all values less than or equal to, say 3, use an if  statement:  

$ awk '{if ($1<=3) n+=$1;} END {print n;}' < 
/home/public/cs601/unix/coffee 

In this case, you will see output 5 (3+2);  

Using awk to grab a particular column is very common when processing log files. 
Consider a http://www.jguru.com page view log file, 
/home/public/cs601/unix/pageview-20021022.log , that are of the form:  

date-stamp(thread-name): userID-or-IPaddr URL site- section 

So, the data looks like this:  

20021022_00.00.04(tcpConnection-80-3019):       203 .6.152.30    
/faq/subtopic.jsp?topicID=472&page=2    FAQs      
20021022_00.00.07(tcpConnection-80-2981):       995 134  /index.jsp      
Home  
20021022_00.00.08(tcpConnection-80-2901):       66. 67.34.44     
/faq/subtopic.jsp?topicID=364   FAQs      
20021022_00.00.12(tcpConnection-80-3003):       217 .65.96.13    
/faq/view.jsp?EID=736437        FAQs      
20021022_00.00.13(tcpConnection-80-3019):       203 .124.210.98  
/faq/topicindex.jsp?topic=JSP   FAQs/JSP          
20021022_00.00.15(tcpConnection-80-2988):       202 .56.231.154  
/faq/index.jsp FAQs      
20021022_00.00.19(tcpConnection-80-2976):       66. 67.34.44     
/faq/view.jsp?EID=225150        FAQs      
220021022_00.00.21(tcpConnection-80-2974):       14 3.89.192.5    
/forums/most_active.jsp?topic=EJB       Forums/EJB        



20021022_00.00.21(tcpConnection-80-2996):       193 .108.239.34  
/guru/edit_account.jsp  Guru      
20021022_00.00.21(tcpConnection-80-2996):       193 .108.239.34  
/misc/login.jsp Misc      
... 

When a user is logged in, the log file has their user ID rather than their IP address.  

Here is how you get a list of URLs that people view on say October 22, 2002:  

$ awk '{print $3;}' < /home/public/cs601/unix/pagev iew-20021022.log 
/faq/subtopic.jsp?topicID=472&page=2 
/index.jsp 
/faq/subtopic.jsp?topicID=364 
/faq/view.jsp?EID=736437 
/faq/topicindex.jsp?topic=JSP 
/faq/index.jsp 
/faq/view.jsp?EID=225150 
/forums/most_active.jsp?topic=EJB 
/guru/edit_account.jsp 
/misc/login.jsp 
... 

If you want to count how many page views there were that day that were not processing 
pages (my processing pages are all of the form process_ xxx), pipe the results through 
grep  and wc:  

$ awk '{print $3;}' < /home/public/cs601/unix/pagev iew-20021022.log | \ 
  grep -v process | \ 
  wc -l 
67850 

If you want a unique list of URLs, you can sort the output and then use uniq :  

$ awk '{print $3;}' < /home/public/cs601/unix/pagev iew-20021022.log | \ 
  sort | \ 
  uniq 

uniq  just collapses all repeated lines into a single line--that is why you must sort the 
output first. You'll get output like:  

/article/index.jsp 
/article/index.jsp?page=1 
/article/index.jsp?page=10 
/article/index.jsp?page=2 
... 

Moving files between machines 

rsync 



When you need to have a directory on one machine mirrored on another machine, use 
rsync . It compares all the files in a directory subtree and copies over any that have 
changed to the mirrored directory on the other machine. For example, here is how you 
could "pull" all logs files from livebox.jguru.com  to the box from which you execute 
the rsync  command:  

$ hostname 
jazz.jguru.com 
$ rsync -rabz -e ssh -v 'parrt@livebox.jguru.com:/v ar/log/jguru/*' \ 
  /backup/web/logs 

rsync  will delete or truncate files to ensure the files stay the same. This is bad if you 
erase a file by mistake--it will wipe out your backup file. Add an argument called --

suffix  to tell rsync  to make a copy of any existing file before it overwrites it:  

$ hostname 
jazz.jguru.com 
$ rsync -rabz -e ssh -v --suffix .rsync_`date '+%Y% m%d'` \ 
 'parrt@livebox.jguru.com:/var/log/jguru/*' /backup /web/logs 

where ̀date '+%Y%m%d'`  (in reverse single quotes) means "execute this date  
command".  

To exclude certain patterns from the sync, use --exclude :  

$ rsync -rabz --exclude=entitymanager/ --suffix .rs ync_`date '+%Y%m%d'` 
\ 
  -e ssh -v 'parrt@livebox.jguru.com:/var/log/jguru /*' /backup/web/logs 

scp 

To copy a file or directory manually, use scp :  

$ scp lecture.html parrt@nexus.cs.usfca.edu:~parrt/ lectures 

Just like cp , use -r  to copy a directory recursively.  

Miscellaneous 

find 

Most GUIs for Linux or PCs have a search facility, but from the command-line you can 
use find . To find all files named .p4  starting in directory ~/antlr/depot/projects , 
use:  

$ find  ~/antlr/depot/projects -name '.p4' 



The default "action" is to -print .  

You can specify a regular expression to match. For example, to look under your home 
directory for any xml files, use:  

$ find ~ -name '*.xml' -print 

Note the use of the single quotes to prevent command-line expansion--you want the '*' to 
go to the find  command.  

You can execute a command for every file or directory found that matches a name. For 
example, do delete all xml files, do this:  

$ find ~ -name '*.xml' -exec rm {} \; 

where "{}" stands for "current file that matches". The end of the command must be 
terminated with ';' but because of the command-line expansion, you'll need to escape the 
';'.  

You can also specify time information in your query. Here is a shell script that uses find  
to delete all files older than 14 days.  

#!/bin/sh 
 
BACKUP_DIR=/var/data/backup 
 
# number of days to keep backups 
AGE=14 # days 
AGE_MINS=$[ $AGE * 60 * 24 ] 
 
# delete dirs/files 
find $BACKUP_DIR/* -cmin +$AGE_MINS -type d -exec r m -rf {} \; 

fuser 

If you want to know who is using a port such as HTTP (80), use fuser . You must be root 
to use this:  

$ sudo /sbin/fuser -n tcp 80 
80/tcp:              13476 13477 13478 13479 13480 
13481 13482 13483 13484 13486 13487 13489 13490 134 91 
13492 13493 13495 13496 13497 13498 13499 13500 135 01 13608 

The output indicates the list of processes associated with that port.  

whereis 

Sometimes you want to use a command but it's not in your PATH and you can't remember 
where it is. Use whereis  to look in standard unix locations for the command.  



$ whereis fuser 
fuser: /sbin/fuser /usr/man/man1/fuser.1 /usr/man/m an1/fuser.1.gz 
$ whereis ls    
ls: /bin/ls /usr/man/man1/ls.1 /usr/man/man1/ls.1.g z 

whereis  also shows man pages.  

which 

Sometimes you might be executing the wrong version of a command and you want to 
know which version of the command your PATH indicates should be run. Use which  to 
ask:  

$ which ls 
alias ls='ls --color=tty' 
        /bin/ls 
$ which java 
/usr/local/java/bin/java 

If nothing is found in your path, you'll see:  

$ which fuser 
/usr/bin/which: no fuser in 
(/usr/local/bin:/usr/local/java/bin:/usr/local/bin: /bin:/usr/bin:/usr/X
11R6/bin:/usr/X11R6/bin:/home/parrt/bin) 

kill 

To send a signal to a process, use kill . Typically you'll want to just say kill pid  where 
pid  can be found from ps  or top  (see below).  

Use kill -9 pid  when you can't get the process to die; this means kill it with "extreme 
prejudice".  

traceroute 

If you are having trouble getting to a site, use traceroute  to watch the sequence of hops 
used to get to a site:  

$ /usr/sbin/traceroute www.cnn.com 
 1  65.219.20.145 (65.219.20.145)  2.348 ms  1.87 m s  1.814 ms 
 2  loopback0.gw5.sfo4.alter.net (137.39.11.23)  3. 667 ms  3.741 ms  
3.695 ms 
 3  160.atm3-0.xr1.sfo4.alter.net (152.63.51.190)  3.855 ms  3.825 ms  
3.993 ms 
... 

What is my IP address? 



$ /sbin/ifconfig 

Under the eth0  interface, you'll see the inet addr :  

eth0      Link encap:Ethernet  HWaddr 00:10:DC:58:B 1:F0   
          inet addr:138.202.170.4  Bcast:138.202.17 0.255  
Mask:255.255.255.0 
          ... 

pushd, popd 

Instead of cd  you can use pushd  to save the current dir and then automatically cd  to the 
specified directory. For example,  

$ pwd 
/Users/parrt 
$ pushd /tmp 
/tmp ~ 
$ pwd 
/tmp 
$ popd 
~ 
$ pwd 
/Users/parrt 

top 

To watch a dynamic display of the processes on your box in action, use top .  

ps 

To print out (wide display) all processes running on a box, use ps auxwww .  

Useful combinations 

How to kill a set of processes 

If you want to kill all java  processes running for parrt , you can either run killall 

java  if you are parrt  or generate a "kill" script via:  

$ ps auxwww|grep java|grep parrt|awk '{print "kill -9 ",$2;}' > 
/tmp/killparrt 
$ bash /tmp/killparrt # run resulting script 

The /tmp/killparrt  file would look something like:  

kill -9 1021 
kill -9 1023 
kill -9 1024 



Note: you can also do this common task with:  

$ killall java 

How to make a histogram 

A histogram is set of count, value pairs indicating how often the value occurs. The basic 
operation will be to sort, then count how many values occur in a row and then reverse 
sort so that the value with the highest count is at the top of the report.  

$ ... | sort |uniq -c|sort -r -n  

Note that sort  sorts on the whole line, but the first column is obviously significant just as 
the first letter in someone's last name significantly positions their name in a sorted list.  

uniq -c  collapses all repeated sequences of values but prints the number of occurrences 
in front of the value. Recall the previous sorting:  

$ awk '{print $3;}' < /home/public/cs601/unix/pagev iew-20021022.log | \ 
  sort | \ 
  uniq 
/article/index.jsp 
/article/index.jsp?page=1 
/article/index.jsp?page=10 
/article/index.jsp?page=2 
... 

Now add -c  to uniq :  

$ awk '{print $3;}' < /home/public/cs601/unix/pagev iew-20021022.log | \ 
  sort | \ 
  uniq -c 
 623 /article/index.jsp 
   6 /article/index.jsp?page=1 
  10 /article/index.jsp?page=10 
 109 /article/index.jsp?page=2 
... 

Now all you have to do is reverse sort the lines according to the first column numerically.  

$ awk '{print $3;}' < /home/public/cs601/unix/pagev iew-20021022.log | \ 
  sort | \ 
  uniq -c | \ 
  sort -r -n 
6170 /index.jsp 
2916 /search/results.jsp 
1397 /faq/index.jsp 
1018 /forums/index.jsp 
 884 /faq/home.jsp?topic=Tomcat 
... 



In practice, you might want to get a histogram that has been "despidered" and only has 
faq related views. You can filter out all page view lines associated with spider IPs and 
filter in only faq lines:  

$ grep -v -f /tmp/spider.IPs /home/public/cs601/uni x/pageview-
20021022.log | \ 
  awk '{print $3;}'| \ 
  grep '/faq' | \ 
  sort | \ 
  uniq -c | \ 
  sort -r -n 
1397 /faq/index.jsp 
 884 /faq/home.jsp?topic=Tomcat 
 525 /faq/home.jsp?topic=Struts 
 501 /faq/home.jsp?topic=JSP 
 423 /faq/home.jsp?topic=EJB 
... 

If you want to only see despidered faq pages that were referenced more than 500 times, 
add an awk command to the end.  

$ grep -v -f /tmp/spider.IPs /home/public/cs601/uni x/pageview-
20021022.log | \ 
  awk '{print $3;}'| \ 
  grep '/faq' | \ 
  sort | \ 
  uniq -c | \ 
  sort -r -n | \ 
  awk '{if ($1>500) print $0;}' 
1397 /faq/index.jsp 
 884 /faq/home.jsp?topic=Tomcat 
 525 /faq/home.jsp?topic=Struts 
 501 /faq/home.jsp?topic=JSP 

Generating scripts and programs 

I like to automate as much as possible. Sometimes that means writing a program that 
generates another program or script.  

Processing mail files 

I wanted to get a sequence of SQL commands that would update our database whenever 
someone's email bounced. Processing the mail file is pretty easy since you can look for 
the error code followed by the email address. A bounced email looks like:  

From MAILER-DAEMON@localhost.localdomain  Wed Jan  9 17:32:33 2002 
Return-Path: <> 
Received: from web.jguru.com (web.jguru.com [64.49. 216.133]) 
        by localhost.localdomain (8.9.3/8.9.3) with  ESMTP id RAA18767 
        for <notifications@jguru.com>; Wed, 9 Jan 2 002 17:32:32 -0800 
Received: from localhost (localhost) 
        by web.jguru.com (8.11.6/8.11.6) id g0A1W2o 02285; 



        Wed, 9 Jan 2002 17:32:02 -0800 
Date: Wed, 9 Jan 2002 17:32:02 -0800 
From: Mail Delivery Subsystem <MAILER-DAEMON@web.jg uru.com> 
Message-Id: <200201100132.g0A1W2o02285@web.jguru.co m> 
To: <notifications@jguru.com> 
MIME-Version: 1.0 
Content-Type: multipart/report; report-type=deliver y-status; 
        boundary="g0A1W2o02285.1010626322/web.jguru .com" 
Subject: Returned mail: see transcript for details 
Auto-Submitted: auto-generated (failure) 
 
This is a MIME-encapsulated message 
 
--g0A1W2o02285.1010626322/web.jguru.com 
 
The original message was received at Wed, 9 Jan 200 2 17:32:02 -0800 
from localhost [127.0.0.1] 
 
   ----- The following addresses had permanent fata l errors ----- 
<pain@intheneck.com> 
    (reason: 550 Host unknown) 
 
   ----- Transcript of session follows ----- 
550 5.1.2 <pain@intheneck.com>... Host unknown (Nam e server: 
intheneck.com: host not found) 
... 

Notice the SMTP 550 error message. Look for that at the start of a line then kill the angle 
brackets, remove the ...  and use awk to print out the SQL:  

# This script works on one email or a file full of other emails 
# since it just looks for the SMTP 550 or 554 resul ts and then 
# converts them to SQL commands. 
grep -E '^(550|554)' | \ 
        sed 's/[<>]//g' | \ 
        sed 's/\.\.\.//' | \ 
        awk "{printf(\"UPDATE PERSON SET bounce=1 W HERE 
email='%s';\n\",\$3);}" >> bounces.sql 

I have to escape the $2 because it means something to the surround bash shell script and I 
want awk to see the dollar sign.  

Generating getter/setters 

#!/bin/bash 
# From a type and name (plus firstlettercap version ), 
# generate a Java getter and setter 
# 
# Example: getter.setter String name Name 
# 
 
TYPE=$1 
NAME=$2 
UPPER_NAME=$3 



 
echo "public $TYPE get$UPPER_NAME() {" 
echo "  return $NAME;" 
echo "}" 
echo 
echo "void set$UPPER_NAME($TYPE $NAME) {" 
echo "  this.$NAME = $NAME;" 
echo "}" 
echo 

 


