

Linux High-AvailabilityLinux High-Availability
An overviewAn overview

Presented by Kevin Inscoe
http://kevininscoe.com/papers/linuxha/

May 15th 2008

Linux Enthusiasts and ProfessionalsLinux Enthusiasts and Professionals
Central Florida (LEAP-CF)Central Florida (LEAP-CF)

http://kevininscoe.com/papers/

What is High-Availability?

 Repair from single point of failure

If a system experiences a failure, it can continue to
operate with or without interruption (transition) during the
repair process.

IEEE defines High Availability as:

“... availability of resources in a computer system, in the wake of
component failures in the system. This can be achieved in a variety
of ways, spanning the entire spectrum ranging at the one end from
solutions that utilize custom and redundant hardware to ensure
availability, to the other end to solutions that provide software
solutions using off-the-shelf hardware components. The former
class of solutions provide a higher degree of availability, but are
significantly more expensive, than the latter class. ... Typically,
these products survive single points of failure in the system...”

http://www.ieeetfcc.org/high-availability.html

Wikipedia says:

“High availability is a system design protocol and associated
implementation that ensures a certain absolute degree of
operational continuity during a given measurement period.”

The dreaded nines:

High-Availability is not Clustering (per se')

Just because two or more systems are clustered together do not
automatically make them highly-available. Clustering may and often
is a solution to making an application or system highly-available
sometimes but it is NOT the complete solution.

 Remember you must be able to recover or repair any single point
of failure this includes networks, front-ends and back-ends (think
database).

High-Availability is not Fault-tolerance

Fault tolerance is defined as continuous operation despite
multiple failures or interruptions within a given sphere of operation.
For instance a system might be consider fault tolerant within a
facility but may not consider infrastructure or connectivity failure
outside the facility.

High Availability is not Self-Healing.

 Self-healing describes any device or system that has the ability to
perceive that it is not operating correctly and, without human
intervention, make the necessary adjustments to restore itself to
normal operation. Because users of a product may find the cost of
servicing it too expensive (in some cases, far more than the cost of
the product itself), some product developers are trying to build
products that fix themselves. Examples of self-healing include Sun's
Service Management Facility. Self-healing implies repair procedures
are full defined.

High-Availability is not Load balancing or scalability

Although load balancing can improve High-Availability the two
concepts are not the completely the same. HA does not imply
scalability. Most traditional HA is redundant and not scaled or
aggregate.

High Availability is not Parallel processing or check pointing.

Software like Beowulf clusters or Symmetric multiprocessing
(SMP) do wonderful at scaling large applications but unless your
applications can survive node failures by parallelization alone you
still want HA.

So why use High Availability then?

Usually because you have a (legacy) application that cannot
horizontally scale, is non-threaded and has no parallelization. Or it
cannot be load balanced. In the case of databases cannot replicate
or the application cannot take advantage of replication (connection
pooling).

Network latency and performance across a network can be
significant reason to choose a cluster over parallelization.

Cost. It may be more cost effective to cluster two hosts with
attached storage rather than roll out a parallel storage network.

Assumptions:

You are looking at holistic and distro-agnostic solutions. I will not
be covering specific HA distros or clusters packages such as
Beowulf.org, Rocks or Red Hat Cluster Suite.

In this presentation we will be looking at SPOF as components
such that would work in any GNU/Linux distributions.

Infrastructure availability will not be covered.

High-Availability is the repair of a single point of failure
(SPOF) what are the failure points and what exists to make
them highly available?

Network(s), storage, server hardware (motherboard, disk
controllers, nic cards, memory, planar and daughter boards,
bus. A whole host of things (pun intended) that go wrong.

Most of the time it is more cost effective to simply duplicate
the server to make parts redundant. Many time it simply is not
possible to make parts redundant outside of a separate server
box or frame. This is what HA is made for.

Node (or server) fail-over.

Sometimes you have to.

Expect time to perform the fail-over! Realistically I always estimate
10-15 minutes for complete roll-over. Maybe longer if performing
a node take-over from a hung server. Deadman detection is key.

Note however it is always better to handle faults locally. If you
can afford dual NICs and power supplies use them! Most hardware
however cannot be faulted.

Good time to remind you to use redundant power legs from different
power distribution units. Know your power loading on each circuit.

Faults that we should check for that would trigger a node failure:

Memory, bus errors, power supply failure (if more than one),
possibly disk errors is locally attached storage or storage
path errors and generally any kind of hardware errors.

Most importantly we must know if our partner is hung this is
called dead-man detection AKA Node Fencing. In Linux-HA this is
known as Shoot The Other Node In The Head (STONITH). This is
accomplished with Heartbeat and multiple networks (serial cable).

You want the kernel to panic on a bad.

/etc/sysctl.conf:

 1. kernel.panic_on_oops = 1
 2. kernel.panic = 1

Heartbeat

Typical /etc/ha.d/ha.cf looks like this:

serial /dev/ttyS0
auto_failback off (active-active change to on for active-passive)
node hosta
node hostb
keepalive 5
deadtime 15
warntime 10
initdead 30

We then specify that "keepalive" heartbeat messages should be sent
every 5 seconds, that a host is declared dead when it isn't heard from
for 15 seconds, and that a warning is logged if a host takes 10 seconds
or more to answer (this might help flag potential problems). We then
specify than on first boot, heartbeat sits quietly for at least 30 seconds
before deciding who is live and who is dead. This is important as some
networks can take a little while before hosts appear properly.

Watchdog Timeout (WDT)

Intel architecture

/etc/ha.d/ha.cf

 watchdog /dev/watchdog
 Optional. The watchdog function provides a way to have a system
that is still minimally functioning, but not providing a heartbeat, reboot
itself after a minute of being sick. This could help to avoid a scenario
where the machine recovers its heartbeat after being pronounced dead.
If that happened and a disk mount failed over, you could have two
nodes mounting a disk simultaneously. If you wish to use this feature,
then in addition to this line, you will need to load the "softdog" kernel
module and create the actual device file. To do this, first type "insmod
softdog" to load the module. Then, type "grep misc /proc/devices" and
note the number it reports (should be 10).
Next, type "cat /proc/misc | grep watchdog" and note that number
(should be 130). Now you can create the device file with that info
typing, "mknod /dev/watchdog c 10 130".

/kernel/Documentation/nmi_watchdog.txt

In order to use the NMI watchdog, you need to have APIC (Advanced
Programmable Interrupt Controller) support in your kernel.

For SMP kernels, APIC support gets compiled in
automatically. For UP, enable either CONFIG_X86_UP_APIC
(Processor type and features -> Local APIC support on uniprocessors)
or CONFIG_X86_UP_IOAPIC (Processor type and features ->
IO-APIC support on uniprocessors) in your kernel config.
CONFIG_X86_UP_APIC is for uniprocessor machines without an
IO-APIC. CONFIG_X86_UP_IOAPIC is for uniprocessor with an
IO-APIC. [Note: certain kernel debugging options, such as Kernel
Stack Meter or Kernel Tracer, may implicitly disable the NMI
watchdog.]

Other deadman and hardware failure detection methods:

LM Sensors - http://www.lm-sensors.org/
SMARTmon - http://smartmontools.sourceforge.net/
Intelligent Platform Management Interface (IPMI) -

/kernel/Documentation/IPMI.txt
http://openipmi.sourceforge.net/
http://www.samag.com/documents/s=9559/sam0503e/

Watch Dog boards (old legacy hardware) – Berkprod.com

Forcing reboot on hung:

rICMP
Magic SysReq (if you are at the keyboard or have access to a KVM)
Intregated Lights Out (iLO) – HP/Compaq servers
Integrated Lights Out Management (ILOM) – Sun and others
Sun Advanced Lights Out Manager (ALOM) – Sun Sparc servers
Remote power off – Advocent and intelligent power strips
Control Alt Del – Hey this ain't windows!

http://www.lm-sensors.org/
http://smartmontools.sourceforge.net/

Things to consider when performing a node fail-over:

Can your data survive such an event for any reason?

Is your data check-pointed, journaled, 3-Phase Commit, etc..

Are you using replication:
Distributed Replicated Block Device (DRBD), MySQL replication,
Hadoop, Network Area Storage (NAS), NFS or cellular file systems
like AFS? Resilient file systems like ZFS.

Session management. Are you web sessions session safe across
servers (session storage)? Customer does not like losing their
shopping cart during a node fail-over.

Multi-step jobs. If they begin running on another host are they
check pointed?

Message buses and IPC do they have backing store?

System time should always be in sync on all hosts. Ntp,
clockspeed, etc

Logging of events: syslog should be going off cluster.

Monitoring: How do you know an event has occurred?

Backups: How are backups performed when the node has
failed-over?

Think how will I start operating again automatically and seamlessly
if this server fails and then TEST, TEST and TEST SOME MORE!

I walk behind servers regularly and pull plugs to see what happens.
Hint: I already know what will happen. :-)

Clustering:

Active-Active (Load balancing)
Passive-Active (Redundancy)

Cold (off), Hot (active) and Warm (passive) hosts in Linux-HA.

Resource management:

Linux-HA requires resources be defined:

V1: haresoruces file
V2: Cluster Resource Manager (CRM)

http://www.linux-ha.org/ClusterResourceManager

It can get complicated quick.
KISS – Keep It Simple Silly

http://www.linux-ha.org/ClusterResourceManager

Cluster needs to have a consistent view of which nodes are valid
members.

Lack of heartbeats received will lead to assumption of a node
failure.

Difficult to distinguish between link failures, node failures if all
links are cut – leads to Splitbrain.

Splitbrain is the term when both sides of the cluster have become
confused and can no longer work as a cluster. This is incredibly bad
because depending on setting of auto_fallback both may try to take
over. This is why using serial cable is best (but make sure it is
good!)

Because failures can only be detected asynchronously, the
cluster state is never certain.

Typical two node HA configuration

Network adapters

Media: Ethernet and fiber. For sake of time dial-up, token ring,
wireless and other non-prolific network media will not be
considered here.

Two schools of thought: Heartbeat or Keep-alive.

Linux High Availability Project and Heartbeat

http://www.linux-ha.org/

Virtual Router Redundancy Protocol (VRRP) and Keepalived

http://www.keepalived.org/
http://sourceforge.net/projects/vrrpd/

http://www.linux-ha.org/
http://www.keepalived.org/
http://sourceforge.net/projects/vrrpd/

Heartbeat requires cooperation through a reliable secondary
network. This can be either another Ethernet network or some
other kind of media but most frequently is a serial port network
since serial connections do not frequently break.

Keep-alive requires the assistance of external gear to maintain
connectivity to a single host. A keep-alive signal is often sent at
predefined intervals, and plays an important role on the Internet.
After a signal is sent, if no reply is received the link is assumed to
be down and future data will be routed via another path until the
link is up again. Keep-alive packet contains null data. VRRP
provides information on the state of a router, not the routes
processed and exchanged by that router. Each VRRP instance is
limited, in scope, to a single subnet. VRRP is not routable.

VRRP works well with Linux Virtual Servers (LVS)
(http://www.linux-vs.org/).

VRRP provides gateway redundancy by allowing each router
within the redundant router topology to share a virtual Ethernet
MAC address and a virtual IP address. When the virtual
addresses are active on a particular router, the router is said to
be the master. Routers without control of the virtual addresses
are referred to as backups. VRRPd is an implementation of
Virtual Router Redundancy Protocol as specified in rfc2338
(obsoleted by rfc3768).

Which one is better? It depends on where you want your HA fail
over decisions to be made. VRRP requires adapter configurations
and router and switch support for it but little else needs to be done
to the host for network fail-over. You also do not require a second
network. On the other hand if the infrastructure does not support
VRRP you should use Heartbeat.

Essentially VRRP is router based fail-over and Heartbeat is
host based fail-over.

Heartbeat requirements:

 Serial cable and dedicated serial ports on each host.
 Heartbeat software http://www.linux-ha.org/Heartbeat
 If you want IP fail-over in a single box you will need the Linux

Channel Bonding Driver (IpFailoverChannelBonding) and dual
NIC's. (http://www.linux-ha.org/IpFailoverChannelBonding)

http://www.linux-ha.org/Heartbeat
http://www.linux-ha.org/IpFailoverChannelBonding

VRRP requirements:

rfc3768 capable router and switch gear (Nokia, Cisco and Juniper
all on board with latest firmware).

Keepalived (http://www.keepalived.org/)

http://www.keepalived.org/

Storage

Lots of choices here but they fall into three general categories:

Local, Network and Adapter

Physical layers:

Local:

IDE, EIDE, ATA, SATA, PATA, SCSI, USB, etc...

Fail-over methods include mirroring, replication, multipathing
(Device Mapper) and twin-tailing in some SCSI scenarios. Twin-
tail must be able to “vary on and off” the LUN called SCSI
reservations - fence_scsi(8)

Peripheral sharing between two co-located hosts might be
possible with USB.

Disconnect failed nodes from access to storage is called Fencing.

Improve hardware redundancy with RAID and multipathing. Some
disk controllers can perform RAID internally.

Software redundancy: JFS, LVM (mirror) and replication.

Network:

NFS, NAS (NetApp) – Simplest to implement, performance can be
a problem. Linux-HA has HaNFS.

AFS, OpenAFS, Arla – More difficult to set up. Requires user
authentication with Kerberos and time must be in sync.

ISCSI – Native to host but still can be a performance issue

Global file systems - Lustre - Lustre is a scalable, secure, robust,
highly-available cluster file system. It is designed, developed and
maintained by Sun Microsystems, Inc. (lustre.org)
GFS - http://www.redhat.com/gfs/
IBM GPFS

http://www.redhat.com/gfs/

Scalable file systems – Hadoop (HDFS)

“ Hadoop implements MapReduce, using the Hadoop Distributed
File System (HDFS) (see figure below.) MapReduce divides
applications into many small blocks of work. HDFS creates
multiple replicas of data blocks for reliability, placing them on
compute nodes around the cluster. MapReduce can then process
the data where it is located.

Hadoop has been demonstrated on clusters with 2000 nodes. The
current design target is 10,000 node clusters.”

Supposedly unbreakable file systems – Sun ZFS (not yet natively
available for Linux)

Replication – rsync (not real time)
- DBRD (real time and good recovery)

Adapters:

Host Bus Adapters, Serial Channel (SSA) and Fiber Channel

Unique identifiers by volser and/or World Wide Name (WWN) and
World Wide Identifier (WWID).

Dual cards managed by LVM and/or Device Mapper (DM)
[identified by WWID] or mounted as SCSI emulation (danger is
device order of SCSI bus if it changes).

DM is recommended especially if using multiple HBAs.

LVM is only needed for partitioning LUN's

Application fail-over:

OpenAIS API – Built in to Linux-HA but programs must interface.

Open Clustering Framework Resource Agent API – opencf.org
Linux-HA has OCF Resource Agents that use these.

Linux Virtual Services, Linux-Director, Ldirectord and Ultra Monkey.

http://www.ultramonkey.org/3/ldirectord.html

Replicated High Availability Manager - http://www.linuxha.net/

Some applications have good clustering support or scalability
built in: MySQL.

Web servers put content switches or load balancers ahead of them
like Arrowpoint (now Cisco CSS), CoyotePoint or F5. Make use of
Internet Cache Protocol (ICP).

http://www.ultramonkey.org/3/ldirectord.html
http://www.linuxha.net/

Commercial cluster products: HP ServiceGuard, EMC AutoStart,
UpSuite HA, Veritas Cluster Server (VCS), Oracle TAF and
Netra High Availability (HA) Suite.

The most common method of start/stopping applications is via init.d
(LSB Resource Agents with OCF Resource Agent) and shell scripts.

Init scripts need to be Linux Standard Base Core Specification 3.0
compatible

http://www.linux-ha.org/LSBResourceAgent

Need to be extra cognizant of exit status and making sure processes
die and start like you expect. Also the order of jobs and processes
may be important. Jobs steps may have dependencies.

Failure detection:

http://www.linux-ha.org/LSBResourceAgent

Linux-HA: linux-ha.org

Other HA software:

OSCAR - http://xcr.cenit.latech.edu/ha-oscar/

HACMP now available for Linux

http://xcr.cenit.latech.edu/ha-oscar/

Questions?

Kevin Inscoe - http://kevininscoe.com
email: kevin@inscoe.org

mailto:kevin@inscoe.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

